If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2t^2+t+2=0
a = -2; b = 1; c = +2;
Δ = b2-4ac
Δ = 12-4·(-2)·2
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{17}}{2*-2}=\frac{-1-\sqrt{17}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{17}}{2*-2}=\frac{-1+\sqrt{17}}{-4} $
| x+(x+1.8)=55.2 | | (1/5)x=(1/5)^3x | | 4x+17=x–4 | | 6+4=x+3 | | (2w-2)2=40 | | 4x-27=57-3x | | 2x+x=58 | | b+30=4b+3 | | 4x-16=-5x+38 | | x/2+4=3/7 | | 6b/26+-2b/13=4/13 | | 2x+2+2x=102 | | 3x+x÷12=180 | | 2b+15=25 | | .5*z=1 | | 7x-28/20-5x=0 | | 2y(2y+5)=0 | | 3(2x-9)=4x | | (x+5)÷7=2 | | -9r+5=59 | | x-3/5=12x/5 | | 3m+2m-4m=6 | | 8(x+1)=2(x+12) | | x^(1/4)-13x^(1/2)+12=0 | | 10x+20=150-3x | | -3+8n=-5n | | n/8+15=15 | | n-(2n-12)=1 | | 3/2x-8=-1 | | 3x+20+2x-5=180 | | (35°+x°)+x=280° | | 4x^2+80x-96=0 |